
S\

HIERARCHICAL BAYESIAN ANALYSIS OF CHANGE POINT PROBLEMS

BY

BRADLEY P. CARLIN, ALAN E. GELFAN) and ADRIAN F. M. SMITH

TECHNICAL REPORT NO. 437

OCTOBER 18, 1990

Prepared Under Contract

N00014-89-J-1627 (NR-042-267)

For the Office of Naval Research

Herbert Solomon, Project Director

Reproduction in Whole or in Part is Permitted
for any purpose of the United States Government

Approved for public release; distribution unlimited.

DEPARTMENT OF STATISTICS T 1
STANFORD UNIVERSITY

STANFORD, CALIFORNIA NOLVECT 19 "



1. Introduction

The literature on change point problems is, by now, enormous. Here we

consider only the so-called nonsequential or fixed sample size version although an

informal sequential procedure which follows from Smith (1975) is a routine

consequence (see Section 6). Still the literature is substantial and we merely note

several review articles which span both parametric and nonparametric approaches.

These are Hinkley, Chapman and Runger (1980), Siegmund (1986), Wolfe and

Schechtman (1984) and Zacks (1983).

Our focus is on a fully Bayesian parametric approach. Use of the Bayesian

framework for inference with regard to the change point dates to work by Chernoff

and Zacks (1964) and Shiryayev (1963). Smith (1975) presents the Bayesian

formulation in the case of a finite sequence of independent observations. In

particular he addresses three situations: (i) both the initial distribution and the

changed distribution are known, (ii) only the former is known (iii) both are

unknown. Details are given for binomial and normal models. Broemeling (1972)

and Menzefricke (1981) also consider normal models. Bacon and Watts (1971),

Ferreira (1975), Holbert and Broemeling (1977), Chin Choy and Broemeling (1980),

Smith and Cook (1980), and Moen, Salazar and Broemeling (1985) look at change

points in linear models. Booth and Smith (1982) and, in a slightly different fashion.

West and Harrison (1986) consider time series models. Diaz (1982) and Hsu (1982)

study sequences of gamma-type random variables. Raftery and Akman (1986)

extend this to P:isson processes where the change point need not have occurred at or--

an event time. Me
El

In our view wider use of the Bayesian framework has been impeded by the

difficulties in computing required marginal posterior distributions of the change
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point and of the model parameters. In many of the above papers unsatisfying

compromises have been made with regard to model specification and/or assumed

knowledge of at least some of the model parameters in order to reduce the

dimensionality of numerical integrations required to obtain marginal posterior

distributions. The objective of this paper is to demonstrate that, for a very broad

range of hierarchical change point models, such compromise is not necessary.

Rather, all desired marginal posterior densities can be obtained through a

straightforward iterative Monte Carlo method. Needed random generation, whether

or not conjugacy is assumed, can typically be carried out in a reasonably efficient

manner. We concede that for any particular situation there may exist more efficient

methods for obtaining desired marginal posteriors. By the same token, we can

handle many situations which were previously inaccessible. Moreover the

conceptual simplicity of our method may prove an attractive alternative to the

analytic and/or numerical sophistication demanded by other methods. The

subsequent development advances work reported in Gelfand and Smith (1990) and

Gelfand et. al. (1990).

In particular in Section 2 we formulate the hierarchical Bayes change point

model. We clarify what distributions are sought and what distributions can be

readily sampled. In Section 3 we briefly review the Gibbs sampler which underlies

our iterative Monte Carlo method. We also show how the distribution of and

expectations of arbitrary functions of the model parameters can be obtained. In

Section 4 through 7 we present a range of examples. As an elementary illustration

in Section 4 we apply our methodology to the "Nile data" previously analyzed under

simplifying assumptions by Cobb (1978) and Hinkley and Schechtman (1987). In

Section 5 we examine the British coal mining accident data of Maguire, Pearson and
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Wynn (1952) as extended and corrected by Jarrett (1979). This data has been

discussed in Worsley (1986), Raftery and Akman (1986) and Siegmund (1988). Our

approach routinely handles the complete data set as well as a reduced version where

20% is treated as missing. In Section 6 we show that independent observations are

not required to implement our methodology as we consider a change in transition

matrix for a sequence of observations from a Markov chain. As a final example in

Section 7 we study the changing regressions model. Illustrating in the context of

simple linear regression we add a further wrinkle by allowing for known order

between the original and changed slope. We look at two data sets - a real one

investigated by Bacon and Watts (1971) and a generated one. We offer some

concluding remarks in Section 8.

2. The Bayesian Formulation

The simplest formulation of the change point problem assumes f and g known

densities with Yi - f(y), i=1,- .k, Yi - g(Y), i=k+l,-. .n, with k unknown taking

values in 4n = {1,2,.. .n}. Thus k=n is interpreted as "no change". As a result

with Y-(Yi,""- Yn) the likelihood L(Y;k) becomes

k n
L(Y;k) =i11 f(Yi) .ifl. g(Yi) (1)

from which, for instance, the MLE for k can be directly obtained. Distribution

theory for the MLE is well discussed in the literature (see e.g., Hinkley, 1970). The

Bayesian perspective is added by placing a prior density r(k) on 4. whence the

posterior density of k I Y becomes

L(Y;k)T(k) (2)
L k t(Y;k) r(k)

k-1

Features of (2) e.g., mode, quantiles, expectations are easy to obtain. The

question of whethei or not a change has occurred is addressed through the posterior
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odds for no change, P(k = n[Y)/{1 - P(k = nIY)}. Since the model assumes at

most one change, to make inference about where it occurred we might use the mode

and a highest posterior density credible interval of (2). It is easy to sample from (2)

since it is a discrete distribution on X. Note also that the independence of the Yi's

is not necessary provided that for each k we can write down the likelihood L(Y;k).

Such a situation arises in the Markov chain example of Section 6 and also for

instance in changing time series applications and more general dynamic models.

Nonetheless to simplify notation and presentation, for the remainder of this section

we assume that the Yi are indepenient.

Suppose, as is more realistic, that the original and changed densities are

unknown but that we assume a parametric family f(YI 0) for the former and a

(possibly different) parametric family g(Y I q) for the latter. Then the likelihood,

L(Y;k, 0,i7) becomes

k n

iuf(Yjie) iH g(Yil7).
1=1 izk+1

Assuming a prior 7r(0,qk) on 0,7 and k the joint distribution of data and parameters

is

aL(Y;k,0,qi ',l ) (3)

Interest centers on the marginal posterior distribution of k as well as that of

components of 0 and of Y7.

For the moment take 0 and j7 to be scalar. Suppose we seek e.g. the

distribution kI Y. To obtain this modulo normalizing constant requires a double

integration over 0 and q; to obtain it exactly requires an additional triple

integration over 0, qi, and k. Such calculation will typically require numerical or

analytic expertise and, of course, if 0 and j7 are vectors the situation worsens.



Consider however the "full" conditional distributions, klY,0,r/, OIY,k,n and

171 Y,k,0. Treating the data Y as fixed, suppose that these full conditional

distributions uniquely determine the joint (conditional) distribution k,0,iil Y, hence

the marginal posteriors which we seek. Then the development in Section 3 shows

that suitable sampling from the full conditional distributions enables marginal

posterior density estimates. We now demonstrate that in the present case sampling

from the full conditional distributions will, rather generally, be straightforward.

First of all, given 0 and q/, kIY,0,r qis exactly of the form (2) and is, as noted

above, straightforwardly sampled. Suppose 0,q and k are assumed independent so

that r(0,r,k) = A(G)7(r)r(k). If A is conjugate with f and 7 is conjugate with g then

01 Y, r,k does not depend upon r and is merely the prior A updated by the data

Y1'.. Yk while q/IY,0,k is 7 updated by the data Yk 1,' 'Y.. Since A and 7 are

thus standard parametric families, sampling from these full conditionals is routine.

Conjugate priors can be made arbitrarily diffuse and have an attractive robustness

property (see Morris 1983, p. 525).

However, we may wish to investigate nonconjugate possibly heavier-tailed

priors. Suppose we drop the assumptions of conjugacy for 0 and for q and also the

assumption of independence for 0, q and k. Nonetheless it is still the case that, for

any scalar parameter, its associated full conditional distribution is proportional to

L(Y;k,0,77). But then random generation methods such as the ratio of uniforms

method or perhaps the rejection method (see Devroye, 1986 or Ripley, 1986) enable

sampling from such a nonstandardized integrable density function. In the present

paper we confine ourselves to conjugate examples. Our experience with

nonconjugate models and the ratio of uniforms method will be reported in a future

paper.



6

Extension to general hierarchical Bayes models is iranediate. Suppose, for

instance, that again 0 and i) are independent of each other and of k. Also suppose

that the prior on 0 takes the form A(0Ia) with conjugate prior p(a) on the

hyperparameter a, the prior on q takes the form -t(qjf) with conjugate prior Eo(P)

on the hyperparameter /. Now the joint distribution of the data and all parameters

is

L(Y;k,#,r7) • -r(k) -A )- p(a). " tjJl)-(~ (4)

Once again the full conditionals are easy to write down and to sample from. In

particular:

k IY, 0, qa,#3 does not depend upon a or P and is exactly of the form (2),

01 Y,k,ia,J does not depend upon q or P and is the prior A updated by the data

Yh" - "Yk,

/l Y,k,0,a,/# does not depend upon 0 or a and is the prior 7 updated by the data

Yk-," " "Yn,

ee Y,k, 0, 1 / does not depend upon Y,k,77 or # and is the hyperprior p updated

by 0,

f[Y,k,0,a, q does not depend upon Y,k,0 or a and is the hyperprior v updated

by q.

Again if the assumed conjugacy and parameter independence are relaxed the

aforementioned random generation methods can still be employed.

3. Review of the Gibbs Sampler

In the previous section we demonstrated that, for rather general hierarchical

Bayes change point models, sampling from each of the full conditional distributions

can be accomplished. Under mild conditions (see Besag, 1974) the specification of

• A



all full conditional densities uniquely determines the full joint density hence all

marginal densities. The Gibbs sampler, introduced formally in Geman and Geman

(1984) and subsequently developed in detail for general Bayesian computations in

Gelfand & Smith (1990) and Gelfand et. al. (1990), provides a mechanism for

extracting marginal distribution from the full conditional distributions. Tanner and

Wong (1987) develop the notion of substitution sampling which is closely related as

discussed in Gelfand and Smith (1990).

For the remainder of this section densities will be denoted generically by

square brackets so that joint, conditional and marginal forms appear respectively as

[U,V] [U IV] and (V]. The usual marginalization by integration is denoted by forms

such as [U] = f'[U I V] [V]. For a collection of random variables U1,U2 ,... UP the

full conditional dtnsities are thus denoted by [Us IUr, r # s], s = 1,2,... p and we

seek the marginal densities [Us], s = 1,2,..- p.

Gibbs sampling is a Markovian updating scheme which proceeds as follows.

Given an arbitrary starting set of values U1 
0 ,...U , we draw U I  from

[UIU, ,- .,Up ], then U21 from [U U and soon up to

U (1)from (Up U(1).. ,'UP, to complete one iteration of the scheme. After t

such iterations we would arrive at ((U1 ,...,Up ). Geman and Geman show under
0 (t)d(U -. U)~[,Us

mild conditions that (U ,. ,U,)p ) (U,...UdV[UU ast-c

Hence for t large enough, U t ) for example will be regarded as a simulated

observation from [Us]. Parallel replication of this process m times yields m iid
CTTt) C Tt)

p-tuples U-) ," ",UP1)j = 1,-.-,m. Note that sample size at say the i-th

iteration may be increased from m to any specified size by randomly reusing the

sj with replacement.
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kernel density estimate for [Us] based upon the U11 can be readily obtained

(see e.g., Silverman, 1986) and should be adequate if, at the last iteration the

number of replications, m, is large enough. However using a Rao-Blackwell

argument (see Gelfand and Smith, 1990) a density estimate of the form
M (t)

[sj = iUs IU rj ,#r s]/rn (5)
j=1

is better under a wide range of loss functions. This is not surprising since (5) takes

advantage of the known structure in the model whereas the kernel density estimate

does not. The form (5) is a discrete mixture distribution and is in fact a Monte

Carlo integration to accomplish the desired marginalization.

In our context the Ui are the unknown parameters in the hierarchical change

point model whence for instance in the situation (4) the density estimate for k]Y

becomes m' E [k I Y, Oj , qjt] where [kIY,, q] is of the form (2).j=1

There may also be interest in a function of the parameters (see Section 5), i.e.
l (t l  . T t).

a function of the Ui, say W(U1 , .. Up). Each p-tuple, (U(" , .,pj ), provides an

observed W (t )  W(U 1;t , . .. ,UpT ) whose marginal distribution is approximately
( t

[W] whence a kernel density estimate for [W] using these Wit)can be developed. A

"Rao-Blackwellized" density estimate analogous to (5) can also be obtained. If Us
actually appears as an argument of W the full conditional density [WI Ur, r # s] can

be obtained by univariate transformation from [Us I Ur, r # s].

In concluding this section we note that complete implementation of the Gibbs

sampler requires that a determination of t be made and that across iterations.

choice(s) of m be specified. In a challenging application some experimentation with

different settings for t and m will likely be necessary. We do not view this as a

deterrent since random generation is generally inexpensive and since there may be

no feasible alternative. In the subsequent examples convergence was evaluated in a
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univariate manner by plotting marginal posterior density estimates of the form (5)

five iterations apart to see if they are equivalent under a "thick felt tip pen" test.

Typically a somewhat Small m is used until convergence ib concluded at which point

for a final iteration m is increased by an order of magnitude to develop :he

presented density estimate. We make no claims for this procedure. Assessment of

convergence is a complex issue which we are currently investigating.

4. Normal Means Problem

As an elementary illustration we assume data from a normal distribution

whose mean may have changed at some point during the period of observation.

That is, Yi ~ N(9 1 ,a) i = 1,...k, Yi - N( 2,a2), i=k+1, .- n. At the second

stage we adopt the following prior distributions: k discrete uniform on X4; 01, 02 ~

N(,r2); '1 , a2 ~ IG(a,b) where IG denotes the inverse gamma distribution. At the

third stage of the hierarchy, let p N(po,ao) and T2 - IG(c,d) where k, a0, a, b, c,

and d are known constants. This hierarchical structure is standard in the Bayesian

literature and has already been used with the Gibbs sampler for comparing p

independent normal means in Gelfand and Smith (1990). A simplified version for

the change point proolem was discussed in Smith (1975). Our primary interest

focuses on the marginal posterior distributions of k, 01, and 02. All told we have a 7

parameter problem. The 7 corresponding full conditional distributions are:

2 2 k
pa+Tr  Yi 2 2

• , ^ 2 2 2 [1 0 2

",u+r E Yi 2 7 2

02, y, 01,o01 ,a2 jjjr2 k N k+N1
1 0'2a2+ (n-k) r2 2 a + (n-k)Tr2

a2 I I2
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fY,01,0, a 2,r ,k~IG a + k k _ )2

wher Ly,1, 02,o~u e2 {- 1 2a (y. _02 k2 +-1

92 a I , PI ,7 r k - IG a + 1._ 7 k.1 (Y 22n  +

2 2 2 0 0

2

.2 ,6,O2 2 1o + (0,_,2) +

7 , . Or,2,/p,k - IG c+ 1, 1 (i-z

L (Y; k, 01, 02, 0, r

with p(k lY, t l2,hau a2 I T
h eL(Yaaa,02, a  sa2)

where L(Y;k,0,2c 2 or2) = y _x - 01)2 _ nj k(yi_02)2
1, a~2) ep 2 E2a -2 k/ k n-k

12 a"1 0"2

The Gibbs sampler is thus easily implemented, the only slight inconvenience being

that at each iteration the discrete full conditional for k must be restandardized,

hence reevaluated at each of the n support points.

As an example we analyze the data set given in Table 1 which records annual

volume of discharge from the Nile river at Aswan for the years 1871 to 1970. This

data has been studied by Cobb (1978) and by Hinkley and Schechtman (1987).

Both provide a conditional frequentist approach to estimating k but unrealistically



11

assume that all the parameters except k are known using data-based values p, =

11.0, A2 = 8.5, and a = 02 = 1.25.

(Insert Table 1 here)

We chose relati'iely vague priors for our variances by taking a = b = c = d =

2, and chose the slightly more informative values of po = 10 and o0 = 2 for the

hyperprior on p. Figure 1 presents the marginal posterior density estimate for the

change point, Figure 2 for the mean level before and after the change. Convergence

was achieved within 30 iterations and the densities were drawn using the 3 1St with

m= 100.

Clearly there is strong evidence that the change occurred at k = 28, or

following the year 1898. Our estimate of the posterior probability of this event, .77,

is slightly less than the Bayes estimate of .81 that Cobb obtained using his

simplified model, but more than .64, the unconditional (frequentist) probability that

the maximum likelihood estimator of k equals 28 using the asymptotic sampling

distribution given in Hinkley (1970). The posterior modal values of 10.88 and 8.55

for 01 and 82 respectively, are close to the data-based values above. The marginal

posterior for 01 is more spread than that for 0_ since the change seems to have

occurred early in the series.

5. A Poisson Process With Change Point

As a second illustration consider Bayesian analysis of a Poisson process with a

change point. Such an analysis was recently given by Raftery and Akman (1986).

Assuming conjugate priors they examine the collection of times between occurrences

of the process allowing the time of change to be continuous. For chronologically

ordered time intervals not necessarily of equal length we study the set of occurrence

counts. We use a three stage hierarchical model but assume that the change point
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occurs between intervals. Thus our model for the data is Yi - Po(Oti), i = 1,...k,

Yj - Po(Ati), i = k+1, .- -n. At the second stage we place independent priors over

k, 0 and A : k discrete uniform X, 0 G(al,bj), and A - G(a 2,b2) where G denotes

the gamma distribution. At the third stage we take bi - IG(cl,di) independent of

b2 - IG(c 2,d2) and assume that a,, a2, c, C2, di, and d2 are known. Our interest

again lies in the marginal posterior distributions of k, 0 and A. The collection of full

conditional distributions are easily available as:

0IY,A,bi,b 2,k - G a + I Yi, 11 ti + b-'

AIY,6,b,b 2,k -G a2 + k.1 Y 1k+ b

b, Y, 0,A,b 2,k - IG ai + cl, 0 + dt]

b2jY, 0,A,b1 ,k - IG a2 + c2, [A + d111

and

p(klY,O,A,bjb 2) = L(Y;k,O,A L(Y;k,9,A)

k

kk FYi
where L(Y;k,OA) = exp{(A-)-rtil} (0/A)'

1

A variable of interest might be the ratio R = #/A. Following the discussion

near the end of Section 3 we transform from 9 to R to obtain as full conditional
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k k
distribution RIY,A,b,,b 2,k - G(al + E Yi, A(E ti + b1l) 1 ). A density estimate as

in (5) can now be obtained.

The Gibbs sampler, in general, straightforwardly handles missing data. Such

points can be treated as additional model parameters whose full conditional

distributions are immediate. However if the predictive distributions for such points

are not of interest we would typically not perform the additional random generation

required to incorporate them as model parameters. Rather, we would prefer to use

the likelihood based solely upon the observed data. In the present case, for

example, we need only set the associated Y and t for missing points to 0 in the

likelihood and proceed as above.

A much-analyzed data set of intervals between British coal-mining disasters

during the 112 year period 1851-1962 was gathered by Maguire et. al. (1952),

extended and corrected by Jarrett (1979). Frequentist change point investigations

appear in Worsley (1986) and in Siegmund (1988) while Raftery and Akman (1986)

apply their Bayesian model. We apply ours using yearly intervals. The resulting

observed annual counts appear in Table 2; k e{1,2,..-,112}.

(Insert Table 2 here)

Raftery and Aknan used a vague second stage prior by taking al = a, = .5

and b, = b2 = 0. We make our model comparable by taking their values for al and

a2 and choosing vague third stage priors for b1 and b2, letting cl = c2 = 0 and di =

d2= 1. Convergence of the algorithm was obtained after 15 iterations and again m

= 100. Figure 3 shows the density estimates for k I Y using the entire data set (solid

lines) and using the data set with every fifth year deleted (dashed lines). Note that

k = 41 is the posterior mode in both cases, and that the three largest spikes are k =

39, 40 and 41, meaning the change most probably occured sometime between late
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1889 and early 1892. Raftery and Akman obtained similar results - a posterior

mode of March 10, 1890 and a posterior median of August 27, 1890. Also note that

in the missing data case, with no data at k = 5j the density estimates are the same

for k = 5j and k = 5j-1, j = 1,.. ,22.

Figure 4 displays the density estimates for 01Y (solid lines) and for AIY

(dashed lines) for the original and reduced data sets, and Figure 5 does the same for

R IY. For all three pairs of curves, as expected the reduced data set has the greater

spread. We see that systematically deleting 20% of the data has no effect on the

posterior modes of 0 and A (3.06 and 0.89, respectively), and shrinks the posterior

mode of R only slightly from 3.25 to 3.18. Raftery and Akman obtained 3.41 as the

posterior mean of R using their model. As a final remark, we note that, as in the

last example, the posterior probability that k = n is essentially 0, indicating very

strong evidence for a change.

6. Markov Chain Change Points

To our knowledge there is no previous literature examining the Markov chain

change point problem from a Bayesian viewpoint. Nonetheless the problem is

extremely important arising for instance in the analysis of spatial variations in base

frequencies in DNA (Curnow & Kirkwood 1989 sec. 7) as well as in system user

authentication contexts. Suppose then a sequence of a sequence of n observations Y

= (Yi,'",Yn) from a process which is an p-state stationary Markov chain having

either transition matrix A or precisely one change to a transition matrix B. The

entries of A are aii = P(Yt., = jIYt = i) whence aij ? 0, .aij = 1; similarly for B
J

with entries bij. We take independent Dirichlet priors on the rows of A yielding the

p
prior A(A) =iH)DA (ai) where
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D(ai) - H( a1Ai P A j:1 'j

j1

We do similarly for B taking y(B) H I Dyi (ba). A and -/ offer a rich class of priors.

In particular, special structure for A and B can be modeled through appropriate

choices of the Ai and yl. As before, we denote the prior on k by r(k). Note that the

multinonial change point problem occurs as a special case when the Yi are

independent and a1 = a, bi = b.

We assumle A,B,k independent whence the joint of distribution of the data and

parameters is

f(YIA,B,k) T (k) -A(A) - -(B) (6)

where at Y= y =(yi,- 7... ,
k-I n-i

f(y IA,B,k) =IT ayt yt* ff byt yt~1/1l y) 2 <k < n-i

= ayt yt+, po(yl), k = n (7)

n-1

t=1

with go denoting the initial or starting state distribution. Using (6) and (7) we see

that the full posteriors are as follows:

AY,B,k- HDA.+Z.(ai) (8)

P
BIY,A,k - 1 lDZ Zdai) (9)
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where Zi = (Zih" ",Zip) with Zij = # of transitions from i to j within observations

Yl,'",Yk, Z = (Z ,-",ZP ) with Zj = # of transitions from i to j within

observations Yk,"" ",Y., and

p(kIY,A,B) = f(YIABk)T(k) (10)

Ef (YI A,B,k)r(k)

Note that since we are conditioning on all the data, hence Y1, go does not appear in

(8) or (9) and cancels in (10). Thus we need not worry about its specification.

A three stage hierarchical model can be developed by placing priors on the Ai

and 7i. Details are similar to the previous examples and are omitted. We note that

work on hierarchical models for contingency tables as in e.g., Albert and Gupta

(1982) is closely related.

We add the usual Bayesian caveat. The number of parameters involved in

this analysis is 2r(r-1) + 1. Hence the smaller n is relative to 2r(r-1) + 1 the more

the prior will drive the posterior densities. Other considerations may make it

important to detect the change point as soon as possible rather than waiting to the

end of the data sequence. Simple updating of the posterior given new data is not

possible since with additional data the domain of k changes. If "change" versus "no

change" is of primary concern, as an informal sequential procedure we might place a

spike in the prior r at k = n. For instance 7(n) = 1/2 implies prior indifference

regarding a change in the first n observations. Use of a uniform prior would imply

odds of n-I to 1 for a change. Monitoring the posterior odds for no change,

P(k=nIY)/(1-P(K=nIY)), will reveal a downward trend to warn of change.

As an illustrative example we consider a three state stationary Markov chain

where
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[0.7000 0.1500 0.15001 [0.3333 0.3333 0.3333]
A = 0.3333 0.3333 0.3333 B = 0.1500 0.7000 0.1500

.0.3333 0.3333 0.3333 10.3333 0.3333 0.3333J

Table 3 gives a sequence of 50 observations generated with a change after k = 35.

(Insert Table 3 here)

T(k) was taken to be uniform over f1,-..-50}. The Dirichlet priors are taken

to be generalized uniforms, i.e. all Aij, -tij = 1. Turning to the marginal posteriors,

in Figure 6 we show for k I Y a comparison of the density at iteration 4 (solid line)

and at iteration 5(dotted line) using m = 100. We would not conclude convergence.

In Figure 7 we compare iterations 30 (solid line) and 31 (dotted line). Now a

conclusion of convergence seems appropriate. In fact the density estimates have

been roughly this stable since iteration 20. The marginal posterior for k has mode

at 33 with roughly 60% of the mass on the set {33, 34, 35}. In Figure 8 we show the

marginal posteriors for all I Y and bul I Y. In Figure 9 we show the marginal

posteriors for a22 1 Y and b22 1 Y. Note that for both all and b22 modes and

concentration of mass agree with the "true" a1 and b22 respectively. Interestingly,

for bl, the marginal posterior is one-tailed. This arises because for the observed

sequence there are no transitions from state I to state 1 after k = 33.

7. Changing Linear Regression Models

Bayesian analysis of changing linear models includes the work of Bacon and

Watts (1971), Ferreira (1975), Holbert and Broemeling (1977), Chin Choy and

Broemeling (1980), Smith and Cook (1980) and Moen, Salazar and Broemeling

(1985). Typically this work involves simplified models and/or considerable analytic

effort. By contrast the Gibbs sampler enables analysis of complex models while



18

demanding little mathematical and computational expertise from the user. In what

follows, we outline and exemplify the basic unconstrained model. Furthermore, in

the spirit of robustness we investigate the impact of the choice of the prior on the

results. We then add the constraint of ordered slope parameters, and show the

surprising ease with which the Gibbs sampler provides a solution, illustrating with a

second example.

7.1 Basic Unconstrained Model

Consider a three-stage hierarchical simple linear regression model, where at

the first stage Yi - N(a1 +fixi, a~), i = 1,-.-,k, Yi - N(a 2+.xi, U2),

i= k+l,..-, n. At the second stage we take 01 = (a,3 1 )T , 02 = (0,) T

2 2independent N(0o,E), and al, 02 independent IG(ao,bo). Again we assume k follows

a discrete uniform distribution on X.

At the third stage, we take the independent normal-Wishart form 00

N(A,C),.E-' - W((pV)-',p). Thus we have a 13 parameter problem with known

constants I, C, V, p, ao and bo.

(k) (k)T (k) 1) 1  (k) -2 (k)T (k)For a given k define B = (or QX X i  + , b( =ai Xi Yi +
, = 1,2 where (k) ri.-. i , 2 = Xk,,l .... X0 =

(Y_,",Yn)T , y( k)= )T L + C')-. Then using standardY2 =(Y,,"Yn)T. Let A=(2E' Y C,)x

distribution theory we obtain the following full conditional distributions:

( ) k) (k) (k) (k) T (k) (k)
-iN(B b , B i = 1,2; oIG(ao + k/2,{(yIk) - 1 O) (Y1  - 1 01)

1/boV 1); 2 ~IG(ao + i-, ,(y(k) Xk)0) (Y - X2 0) +{OVO- ) (Yi - " T and /b}'

0o~N(Aj-'l(0l+02)+C-'pj, A); E'l~W(, i-_ 00)(0,- _0o)T + pV} "1 , p+2) and

k-p(klY, 01, 2, al, 2, 00, E) = L(Y; k, 01, , a2, o)/E L(Y; k, 0 2, O., o, a2)
Kn

22)- 1 (yk) x(k0i)T (k) (k) k n-k

where L(Y; k, 0o, 02, or,  ex 2{ 1. -(k-X 1 k)T (Yi -X 1 0i)0/a 1 a2
i 2l i i
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Simulation from the Wishart distribution is easily done using the algorithm of

Odell and Feiveson (1966) as outlined for the 2x2 case in Gelfand et. al. (1990).

We apply the Gibbs sampler thus defined to the data in Table 4, which come

from Bacon and Watts (1971, p.530). In this data, X represents the log of the flow

rate of water down an inclined channel (g./cm.sec.), and Y represents the log of the

height of the stagnant surface layer (cm.) for different surfactants.

(Insert Table 4 here)

The data seem to indicate a decreasing linear trend that appears to become

more steeply decreasing for X > 0. We apply our model using a vague prior for the

2ai, ao = 0.1 and bo = 100, along with a vague third-stage prior for 00, all entries of

A and C- 1 equal to 0. For E'1 we compare two different Wishart priors, the first

somewhat informative (p = 4, V 0.001 03)' and the second more vague (p = 2,

0[ s]).
Convergence was obtained within 50 iterations and densities are drawn at the

51s t using m = 100. Figure 10 plots the estimated marginal posterior for k using the

informative (solid line) and vague (dashed line) priors on E-1. Figure 11 does the

same for , and /?2, the slopes before and after the change (the 2 estimates are on

the left). Clearly with noninformative priors on 0o , a2 and o2 , changing the prior

on E'1 can have a rather marked effect on the results. For example, k's posterior

distribution is much more diffuse using the vague Wishart prior. Our intent here is

not to claim one or the other solution is "correct," but rather to emphasize how

simple it is using the Gibbs sampler for the data analyst to investigate prior

robustness interactively.

The estimated posterior modes of /3 for the informative and vague priors are

-0.42 and -0.44 respectively, and for #2 they are -1.01 and -0.98, respectively.
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Though Bacon and Watts used a different parameterization, a somewhat less

elaborate model, vague prior specification, and treated k as continuous, their results

are quite comparable to ours: their joint posterior obtains its global maximum at

01 = -0.44, i2 = -1.02, with the change estimated to have occurred at X = 0.054.

This corresponds to k = 13, which is the posterior median we obtain under either of

our prior specifications.

7.2 Ordered Slopes Model

In certain applications we know that if there has been a change, the change

must be in a certain direction. We would want to incorporate this prior knowledge

iito our analysis. This entails placing order constraint(s) on the parameters, which

makes required integrations much more difficult, perhaps impossible. The Gibbs

sampler can again be used to overcome this difficulty.

Consider the portion of the prior involving 01 and 02. Suppose we draw Oi by

first obtaining 9i and then ai given /i. Assume that #1 and 02 correspond to the

larger and smaller respectively of two independent draws from the same marginal

normal prior on the slopes as in the preceding section. Then the full posteriors for

Ah and /3 are merely truncated versions of the previous full posteriors, truncated so

that 02 < 0i. The full conditional distributions for the ai as well as for all other

parameters are unchanged. One for one sampling from a truncated distribution can

be effected using a suggestion in Devroye (1986, p. 38). More general order

constraint can be modeled by assuming two independent but not identically

distributed draws before ordering to obtain 1 and #2.

(Insert Table 5 about here)

To illustrate these ideas, consider the data set in Table 5 generated according

to the model Yi - N(i, 52), i = 1,. .15, Yi - N(30-i, 52), i = 16..., 29 so that the
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true 0, and /2 are 1 and -1, respectively. The remaining prior structure agrees with

that of the previous section except for E-1 where we take Wishart with p = 3 and V

= I. We again obtained convergence within 50 iterations and our plots are based on

m = 100. Figure 12 compares the resulting estimated marginal posteriors for /3 and

f3 under the model of the previous section (solid line) and the present ordered slopes

model (dashed line). The pair of I1 curves are to the right in the figure. For 01, the

constrained model yields a more concentrated posterior. In particular, both of the

tails are quite heavy in the unconstrained model ranging from roughly -8.0 to +13.0

while for the constrained model they are limited to roughly -1.2 to 5.7. Additional

studies (not shown) show more and more dramatic differences between the two

models as p is decreased; the tails become heavier and heavier for the basic model

while remaining virtually unchanged in the constrained model.

8. Conclusion

We have shown how a broad range of hierarchical Bayes change point models

can be straightforwardly analyzed using an iterative sampling based approach

known as the Gibbs sampler. Interesting future applications lie in such as areas as

time series and other dynamic models, generalized linear models and nonlinear

models as well as in the employment of nonconjugate priors.

References

Albert, J.H. and Gupta, A.K. (1982). Mixtures of Dirichlet distributions and

estimation in contingency tables. Ann. Statist. 10, 1261-8.

Bacon, D.W. and Watts, D.G. (1971). Estimating the transition between two

intersecting straight lines. Biometrika 58, 525-34.



22

Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems

(with discussion). J.R. Statist. Soc. B 36, 192-326.

Booth, N.B. and Smith, A.F.M. (1982). A Bayesian approach to retrospective

identification of change points. J. Econ. 19, 7-22.

Broemeling, L. (1972). Bayesian procedures for detecting a change in a sequence of

random variables. Metron XXX, 1-14.

Chernoff, H. and Zacks, S. (1964). Estimating the current mean of a normal

distribution which is subjected to changes in time. Ann. Math. Statist. 35,

999-1018.

Chin Choy, J. and Broemeling, L. (1980). Some Bayesian inferences for a changing

linear model. Technometrics 22, 71-8.

Cobb, G. (1978). The problem of the Nile: conditional solution to a changepoint

problem. Biometrika 65, 243-51.

Curnow, R.N. and Kirkwood, T.B.L. (1989). Statistical Analysis of

Deoxyribonucleic Acid Sequence Data - A Review. J.R. Statist. Soc. A, 152,

199-220.

Devroye, L. (1986). Non-Uniform Random Variate Generation. New York:

Springer-Verlag.

Diaz, J. (1982). Bayesian detection of a change of scale parameter in sequences of

independent gamma random variables. J. Econ. 19, 23-9.

Ferreira, P.E. (1975). A Bayesian analysis of a switching regression model: a

known number of regimes. J. Am. Statist. Assoc. 70, 370-4.

Gelfand, A. E. and Smith, A.F.M. (1990). Sampling based approaches to

calculating marginal densities. J. Am. Statist. Assoc. (to appear).



23

Gelfand, A.E., Hills, S.E., Racine-Poon, A. and Smith, A.F.M. (1990). Illustration

of Bayesian inference in normal data models rsing Gibbs sampling. Technical

Report, Department of Mathematics, University of Nottingham.

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions and

the Bayesian restoration of images. IEEE Trans. on Patterni Analysis and

Machine Intelligence, 6, 721-41.

Hinkley, D.V. (1970). Inference about the change-point in a sequence of random

variables. Biometrika 57, 1-17.

Hinkley, D. and Schechtman, (,387). Conditional bootstrap methods in the mean

shift model. Biometrika 74, 85-94.

Hinkley, D., Chapman, P. and Runger, G. (1980). Change point problems.

University of Minnesota Technical Report 382.

Holbert, D. and Broemeling, L.D. (1977). . Bayesian inference related to shifting

sequences and two-phase regression. Commun. in Statist. A 6, 265-75

Hsu, D.A. (1982). A Bayesian robust detection of shift in the risk structure of stock

market returns. J. Am. Statist. Assoc. 77, 29-39.

Jarrett, R.G. (1979). A note on the intervals between coal-mining disaster3.

Biometrika 66, 191-3.

Maguire, B.A., Pearson, E.S. and Wynn, A.H.A. (1952). The time intervals

between industrial accidents. Biometrika 38, 168-80.

Menzefricke, U. (1981). A Bayesian analysis of a change in the precision of a

sequence of independent normal random variables at an unknown time point.

Appl. Statist. 30, 141-6.

Moen, D.H., Salazar, D. and Broemeling, L.D. (1985). Structural changes in

multivariate regression models. Commun. in Statist A 14, 1757-68.



24

Morris, C.N. (1983). Natural exponential families with quadratic variance

functions: statistical theory. Ann. Statist. 11, 515-29.

Odell, P.L. and Feiveson, A.H. (1966) A numerical procedure to generate a sample

covariance matrix. J. Am. Statist. Assoc. 61, 198-203.

Raftery, A.E. and Akman, V.E. (1986). Bayesian analysis of a Poisson process with

a change-point. Biometrika 73, 85-9.

Ripley, B. (1986). Stochastic Simulation, John Wiley & Sons, New York.

Shiryayev, A.N. (1963). On optimum methods in quickest detection problems.

Theory of Prob. and its Appl. 8, 22-46.

Siegmund, D. (1986). Boundary crossing probabilities and statistical applications.

Ann. Statist. 14, 361-404.

Siegmund, D. (1988). Confidence sets in change point problems. Inter. Statist.

Review J6 1, 31-48.

Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis.

Chapman and Hall, London.

Smith, A.F.M. (1975). A Bayesian approach to inference about a change-point in a

sequence of random variables. Biometrika 62, 407-16.

Smith, A.F.M. and Cook, D.G. (1980). Straight lines with a change-point: a

Bayesian analysis of some renal transplant data. Appl. Statist. 29, 180-9.

Tanner, M. and Wong, W.H. (1987). The calculation of posterior distributions by

data augmentation (with discussion). J. Am. Statist. Assoc. 82, 528-50.

West, M. and Harrison, P.J. (1986). Monitoring and adaptation in Bayesian

forecasting models. J. Am. Statist. Assoc. 81, 741-50.

Wolfe, D.A. and Schechtman, E. (1984). Nonparametric statistical procedures for

the change point problem. J. Statist. Planning and Inference 9, 389-96.



25

Worsley, K.J. (1986). Confidence regions and tests for a change-point in a

sequence of exponential family random variables. Biometrika 73, 91-104.

Zacks, S. (1983). Survey of classical and Bayesian approaches to the change point

problem: fixed sample and sequential procedures of testing and estimation, In:

Recent Advances in Statistics, Herman Chernoff Festschrift, p. 245-69,

Academic Press, New York/London.



26

Table 1. Annual volume of the Nile River (discharge at Aswan, 10' 0 m3)
from 1871 to 1970, with apparent changepoint near 1898

Year Vol. Year Vol. Year Vol. Year Vol.

1871 11.20 1896 12.20 1921 7.68 1946 10.40
1872 11.60 1897 10.30 1922 8.45 1947 8.60
1873 9.63 1898 11.00 1923 8.64 1948 8.74
1874 12.10 1899 7.74 1924 8.62 1949 8.48
1875 11.60 1900 8.40 1925 6.98 1950 8.90

1876 11.60 1901 8.74 1926 8.45 1951 7.44
1877 8.13 1902 6.94 1927 7.44 1952 7.49
1878 12.30 1903 9.40 1928 7.96 1953 8.38
1879 13.70 1904 8.33 1929 10.40 1954 10.50
1880 11.40 1905 7.01 1930 7.59 1955 9.18

1881 9.95 1906 9.16 1931 7.81 1956 9.86
1882 9.35 1907 6.92 1932 8.65 1957 7.97
1883 11.10 1908 10.20 1933 8.45 1958 9.23
1884 9.94 1909 10.50 1934 9.44 1959 9.75
1885 10.20 1910 9.69 1935 9.84 1960 8.15

1886 9.60 1911 8.31 1936 8.97 1961 10.20
1887 11.80 1912 7.26 1937 8.22 1962 9.06
1888 7.99 1913 4.56 1938 10.10 1963 9.01
1889 9.58 1914 8.24 1939 7.71 1964 11.70
1890 11.40 1915 7.02 1940 6.76 1965 9.12

1891 11.00 1916 11.20 1941 6.49 1966 7.46
i892 12.10 1917 11.00 1942 8.46 1967 9.19
1893 11.50 1918 8.32 1943 8.12 1968 7.18
1894 12.50 1919 7.64 1944 7.42 1969 7.14
1895 12.60 1920 8.21 1945 8.01 1970 7.40
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Table 2: British Coalmining disaster data by year 1851-1962.
Data from Maguire et. al. (1952) as corrected by Jarrett (1979).

Year Count Year Count Year Count Year Count

1851 4 1881 2 1911 0 1941 4
1852 5 1882 5 1912 1 1942 2
1853 4 1883 2 1913 1 1943 0
1854 1 1884 2 1914 1 1944 0
1855 0 1885 3 1915 0 1945 0

1856 4 1886 4 1916 1 1946 1
1857 3 1887 2 1917 0 1947 4
1858 4 1888 1 1918 1 1948 0
1859 0 1889 3 1919 0 1949 0
1860 6 1890 2 1920 0 1950 0

1861 3 1891 2 1921 0 1951 1
1862 3 1892 1 1922 2 1952 0
1863 4 1893 1 1923 1 1953 0
1864 0 1894 1 1924 0 1954 0
1865 2 1895 1 1925 0 1955 0

1866 6 1896 3 1926 0 1956 0
1867 3 1897 0 1927 1 1957 1
1868 3 1898 0 1928 1 1958 0
1869 5 1899 1 1929 0 1959 0
1870 4 1900 0 1930 2 1960 1

1871 5 1901 1 1931 3 1961 0
1872 3 1902 1 1932 3 1962 1
1873 1 1903 0 1933 1
1874 4 1904 0 1934 1
1875 4 1905 3 1935 2

1876 1 1906 1 1936 1
1877 5 1907 0 1937 1
1878 5 1908 3 1938 1
1879 3 1909 2 1939 1
1880 4 1910 2 1940 2
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Table 3: A sequence of 50 observations for the 3--state Markov chain example

1 1 2 2 1 1 1 1 1 1 2 3 3 2 3 2 1 1 2 1

1 3 3 1 1 1 3 2 1 1 1 1 1 3 2 2 3 1 22

2 2 2 2 2 3 2 3 2 2

Table 4. Stagnant band height data* x = log (flow rate in g./cm.sec.),
y -- log (band height in cm.), from Bacon & Watts (1971)

x y x y x y x y

0.11 0.44 0.11 0.43 0.34 0.25 -1.08 0.99
--J0.80 0.90 0.11 0.43 1.19 -0.65 -1.08 1.03

0.01 0.51 -0.63 0.81 0.59 -0.01 0.44 0.13
-0.25 0.65 -0.63 0.83 0.85 -0.30 0.34 0.24
-0.25 0.67 -1.39 1.12 0.85 -0.33 0.25 0.30
-0.12 0.60 -1.39 1.12 0.99 -0.46
-0.12 0.59 0.70 -0.13 0.99 -0.43
-0.94 0.92 0.70 -0.14 0.25 0.33

Table 5: Generated data for ordered slopes example

xi yi xi yi xi yi xi Yi

1.00 --6.71 9.00 12.06 17.00 10.70 25.00 -1.28
2.00 -6.42 10.00 9.90 18.00 9.07 26.00 3.70
3.00 3.85 11.00 15.03 19.00 12.69 27.00 -2.04
4.00 11.25 12.00 9.69 20.00 8.12 28.00 2.00
5.00 11.96 13.00 21.99 21.00 11.18 29.00 -8.35
6.00 -4.58 14.00 14.20 22.00 3.58
7.00 3.90 15.00 6.04 23.00 10.80
8.00 13.63 16.00 16.43 24.00 12.76
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